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FOREWORD

This report is submitted by Rocketdyne to the National Aeronautics and Space
Administration Office of Advanced Research and Technology as the final
technical report of the research performed under Contract NAST-470 during
the period 13 June 1966 through 12 May 1968. Technical ﬁanager of this
contract is Dr. R. H. Wilson, Chief, Applied Mathematics Branch, NASA
Headquarters, Washington, D.C.

ABSTRACT

A multistep predictor-corrector method for the numerical solution of ordinary
differential equations is developed. The difference equations employed are
generalizations, for the case of variable mesh spacing, of previous formulas
requiring fixed step size. In addition to retaining the high local accuracy
and convergence properties of the earlier methods, the variable mesh method

is developed in a form conducive to the generation of effective criteria for
the selection of subsequent step sizes in the step by step solution of differ-
entiasl equations. These criteria are based on considerations of truncation
error, convergence of corrector iterations, and an extensive treatment of
relative numerical stability. The algorithm has been tested extensively and

compared with other methods. The results of the comparison favor the new
method .

This report also discusses an extension of the variable mesh multistep method
for the case of stiff equations and application of the variable mesh approech
to partial differential equations.
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VARTABLE MESH METHODS FOR

DIFFERENTTAL EQUATIONS

1. INTRODUCTION. A great deal of reéearch effort has been directed’
toward the numerical solution of first order nonlinear ordinary differen-
tial equations because of the practical importance of such problems. The
most widely used numerical methods that have been developed for these pro-
blems provide approximate values of the solution at discrete points accord-
ing to a stepwise computation beginning at an initial point for which the
solution is known. These methods are called one-step methods 1if the cal-
culation of the solution at a given point depends explicitly on values of
the solution and one or more of its derivatives at only one previous point.
Multistep methods require values at two or more previous points. One-step
(nge-Kutta) methods are very convenient because the step increments can
be changed readily from step to step as desired and because the solution
in the initial steps 1s calculated with the same formulas as used in sub-
sequent steps. Multistep methods, although less convenient, are usually
more efficient because, by making use of the calculations of more than one
previous step, less computer time is required to achieve the same accuracy
as achieved with a one~step method.

The research reported here was directed toward the development and testing

of variable mesh multistep methods which not only preserve the efficiency

due to the multistep structure but improve this efficlency by permitting as
much freedom in the variation of the step increments as 1s afforded by one-
step methods. Care was taken to formulate the basic difference equations

in a manner conducive to the development of effective criteria for selecting
the variable mesh increments as the calculation progresses. In the follow-
ing pages the basic algorithm is described and the analysis and practical
considerations Jjustifying the mesh criteria are presented. The mesh criterias
were subjected to extensive numerical testing, and in addition, the algorithm



was compared with known methods in the numerical solution of selected dif-
ferential equations. The results of this and other experimental work are
sumarized in later sections.

The problem of starting the computation, that 1is, the requirement of com-
puting the solution at the first few points by a separate technique in
order to initialize multistep methods, is not emphasized here for two
reasons. First, because of the variable mesh formulation, the calculation
is only initialized once and never has to be restarted as would be required
in changing the step size while using a fixed step size, multistep method.
In the second place, fairly general starting procedures are readily avail-
able for incorporation with the variable mesh method because the step in-
crements used in the starting procedure can be smaller than those used in
the subsequent calculations. For example, the starting procedure outlined
in {1] for the variable mesh method consists of simply using the one-step
Adams-Bashforth/Adams-Moulton formulas for the first step, the two-step
formulas for the second step, and the three-step formulas for third step.
The same step slze 1is used for each of these three initial steps, and it
is chosen small enough to yield the desired accuracy at the first point.
There is little danger of exceeding thils error at the second and third
points since higher order formulas are used.

In addition to the basic variable mesh multistep method for ordinary dif-
ferential equations, this report discusses an extension of the method for
stiff equations and application of the variable mesh approach to partial
differential equations.



2+ VARIABLE MESH MULTISTEP FORMULAS. The initial value problems
considered are represented by differential equations of the form

g‘%: F(x,y) , (l)

with initial condition y(xo) =Yy Equation (1) represents a single
differential equation; however some special considerations required
for systems of differential equations will also be given in the sequel.
It 1s assumed at the outset that F 1is continuous and satisfies the
Lipschitz condition that guarantees the existence of a unique, continu-
ous and differentiable solution [2, P. 157. The continuity of higher
derivatives will be required later in the discussion of truncation

eryor.

We will use the ususl notation in which Yo denotes the computed value
of y(xn) and y; denotes F(xn, yn) . Tt is assumed that the computed
solution is obtained recursively by one or more formulas of the following

type:

Yl = Bo%n * Bdn-1 t Bz Y B39y

(2)
+h(b_1 l+by +Dy¥7 g +by2+b3yn5) .

Here h denotes the current step slze, Xl

vary with n. The coefficients a N and b 4 are also variable and it

will be convenient later to express them in terms of mesh parameters o,
B, and Yy defined by

- X and 1s permitted to

(e JE (xn-xn_l)/h »
B= (xx )b, (3)
and Y= (x X, )/h .



Ve require vy > B > Q.

For the case of fixed step size, Q, B, and Y have the constant values
1, 2, and 3, respectively. Henrici [2, pp. 218, 224 has defined condi-
tions of consistency and stability for fixed h and has shown that they
are necessary and also sufficient, when taken together, for convergence
of y, to y(xn) as h—0. The stability condition requires that no
root of the equation

Y 2
P -aopa-alp -azp-a5=0 (%)

exceed one in modulus and roots of unit modulus must be simple. The
consistency condition requires that equation (2) be exact if y(x) is
either constant or linear.

An analogous equivalence theorem holds in the variable mesh case. It
follows immediately that the stability and consistency conditions are
necessary for convergence in the variable mesh case because they are
necessary in the special case of ‘fixed mesh. Henrici's proof of suffi-
ciency has been generalized by the author to account for the case of
variable step size, but is omitted here because of its length. For this
case the two condlitions are required to hold for each different step size
used in the integration.

The validity of the generalized equivalence theorem is not restricted to
difference equations with only the number of terms actually shown in (2).
However since we will restrict the present discussion to fourth order
methods--that is, methods with error terms proportional to the fifth powver
of h--the terms shown are adequate. The optimum order to use in a given
application depends heavily on the degree of accuracy desired, but fourth
order is a reasonable compromise for medium range accuracy--say two to
six significant figures. With fixed step size it is often desirable to
vary the order within a given epplication in order to maeintain a desired



accuracy. The variable mesh procedure, on the other hand, has the ad-
vantage of achieving the same objective without switching from formulas

of one order to those of another.

Both explicit (predictor) and implicit (corrector) variable mesh formulas

are used. The explicit equation has b_., = 0 while the implicit usually

can be solved by iteration. The coeffiiients in (2) for the two formulas
are determined in part by requiring satisfaction of the stability and
consistency conditions. By requiring exactness for F(x,y) = 0, the rela-
tion, ao + a; + a, + a3 =1, is imposed, from which it follows that one
root of equation (4) is unity. The other three roots ("parasitic") arising
because a fourth order difference equation is used in place of a first

order djifferential equation, are all zero if we select a = 1, a, = a8, =

The congistency condition is satisfied by the additional requirement
of exactness for y = X=X, which yields, for the predictor, b0 + b1 +

b2 + b3 = 1. Combining this with the requirements of exactness for

1
E(x—xn)23 l(x—xn)3, l(x—xn)q, the b, of the predictor,
= ’ / ’ ’
yn+1 yn + h(boyn * b1yn—1 * b2yn—2 + b3yn_3), (5)

are determined recursively as follows:

_ 2(2+30) (B+a) + 1-2a2)

=
|

3 12y (Y-et) (B-7)
2+3 cx—(ry(w;g)b3
P2 = T 6B0Bw)
b, = - %E(1+27b3+2ﬁb2)
by =1-bg~-b, —b; | (6)



Similarly, a corrector of the form
' s 4 I
Yns1 = ¥n * h(d—1yn+1 * doyn * dlyn—l * d2yn—2) (7)
is found with coefficients

& - 1 +2
2 " 12 31141852'31:5

d - - 28 +1
1 12a(1+«) (B-c)

- d2(1+5) - dl(ha)

-d -4, - 8
| d2‘11‘10' (8)

N

For the special case of fixed step size, the above predictor and corrector
formulas reduce to the widely accepted Adams-Bashforth and Adams-Moulton
formulas respectively. In this connection one is reminded of the formulas
presented by Nordsieck in a paper which, like the present paper, also em-
phasizes the advantages of changing step size [3]. Although the algorithm
of Nordsieck is substantially different from that presented here, it is
similar in the sense that his basic integration formulas are equivalent
to the Adams formulas. However, the formulation used by Nordsieck appears

to be much less conducive to the development of effective mesh selection

criteria than is the formulation presented above. This claim is corroborated

by evidence obtained when both methods, complete with their respective
recommended mesh selection criteria, were applied to selected differential
equations. (This work is described in more detail in a later section. )
This deficiency of the Rordsieck method may result from his assumption
of "fixed point" operations rather than the more commonly used "floating
point," as also suggested by Lewis and Stovall in a paper which appeared
too late for incorporation in the work reported here [4].



Assuming continuous higher derivatives of F(x,y), it is evident upon com-—
paring equation (5) with an appropriate Taylor Series representation for
y(xn+1) that the truncation error in (5) can be represented as
5
h”’ v 6
P, 57 ¥, + 0(07),
where the coefficient Pn depends on o, B, and y. If we consider the
residual error resulting from the application of (5) to the polynomial
(x—xn)5, we find that

o
1

4 4 4
1 -5 (brx +b26 +b3y )

I

1+ 25 [3aBy) + (B By) + byl (9)

Similarly, if the error in (7) is taken in the form

5
h A\’ + O(hé),

Cn §T yD

Cn is found to be given by

(!
1

4 4
1 -5 (d_1+d1a +d2‘B )

1 - 25 (3+20B++B). (10)

Various alternative modes of utilization of the predictor and corrector
formulas are available in practice. For example, the predictor can be
used without employing the corrector at all. On the other hand, if the
corrector is used, it usually is used iteratively, with the predictor
providing the first guess. Qualitatively, some of the arguments for and

against the various alternatives are as follows:



' a) Number of derivative evaluations per step. The “predictor-only"
mode requires only one evaluation per step. If one correction
is employed, a gsecond evaluation is usually made after the cor-
rection to enhance numerical stability. In general, n cor-
rections require either n or n+l derivative evaluations,
depending on vhether a final evaluation 18 or is not carried out.
Evaluations of camplicated derivative functions frequently re-
quire a predominant portion of the total computer time.

b) Truncation error. Implementation of the corrector reduces the
truncation error. (It is a simple exercise to show that
< .
le I < I 1.)

c) Numerical stability. With regard to both absolute and relative
stability, the regions of stability become less restrictive as
the number of correction-evaluation iterations is increased.
Incidentally, these regions became more restrictive as order is
increased.

d) Availebility of mesh criteria. More effective procedures for
automatically selecting the mesh increments can be developed
for same modes than for others. This consideration favors a
predictor-corrector mode with at least two applications of the

corrector.

An empirical program was carried out whereby the various modes were com-
pared in the actual numerical solution of selected differential equations.
The mesh increments were selected in a manner such that the total number
of derivative evaluations was the same for each mode. This work is not
reported in detail here since an even more extensive testing program of
a similar nature for the case of fixed step size was carried out and re-
ported in detail by Hull and Creemer [5]. There conclusions, favoring the
mode p-d-c-d-c, are in agreement with those reached in the present study.



(Here p denotes predictor, d derivative evaluation, and c corrector.)
Consequently, the discussion in the remeining sections will be directed
primarily toward this mode,

3+ NUMERICAL STABILITY FOR SINGLE DIFFERENTIAL EQUATIONS. The con-
dition of stability referred to in the previous section does not guarantee
numerical stability for h > O. A more appropriate analysis of numerical
stability is presented here.

First note that each corrector iteration is performed according to the

equation

2
(k+1) _ (x) ‘
°p+1 T ¥n * hd—lF(xn+1’ cn+1) * h%iodiyn—i’

where the superscript k denotes the kth iteration. Subtracting this

equation from (7) and employing the mean value theorem gives

(k+1) _ (x)
Yn+l ~ %n#l - Ad—l(yn+l_cn+l)’
where
A =l‘(%g) X=X ?
Y/ *=Xpn
T o)
for some 7 between Y4l and Chile Thus the following condition is re-

quired for convergence of the corrector iteratioms:

M l< 1. (11)



It is assumed that condition (1.1) is satisfied in the following discussion,
and in fact this condition will be used in the mesh selection procedures
described in the next section.

It is also assumed for the purpose of the numerical stabllity analysis
thet A is constant, a standard assumption in the literature for fixed
step size. By appropriate choice of h at each step, A can be made
nearly constant in the variable mesh case. In practice, however, this
assumption is usually violated with fixed mesh methods, even when proce-
dures to frequently double or halve the step size are included. Further-
more when numerical stability is the controlling factor, it is good policy
to keep h as large as possible without forcing A beyond its limitation
imposed by the threat of instability. Thus in this case, the mesh incre-
ments used are actually considerably suboptimal at most steps with fixed
mesh methods. On the other hand, the variable mesh feature obviously
allows much better optimization when the integration is stability limited.
Of course when it is not stability limited, variations in A are
inconsequential .,

Initially let us consider the mode which employs a prediction and k cor—
rections with a derivative evaluation after each prediction and correction.
Let € denote the propagated error, y(xn) - cl(lk). Then it can be shown

that € satisfies the difference equation

€

 j-1 k+1 k
n+1-en[1+zx (a,+_y) + X d_lbo]

2 k
+2 ¢ . MalTha ge Mgk g,
i=] n-ij=1 i=1 n-i -1

10



except for the fifth order truncation error. The effect of the predictor
on the propagated error decreases with increasing k because the factor
(M_;)" multiplies the b, in the sbove equation. In the limit the cor-

rector alone determines the error propagation, the equation being given

by

G (17M) - () - g My - My =0 ()
In practice, when the mesh increments are small enough to provide a
reasonably small truncation error, the corrector iterations beyond the
second are essentially redundant. Hence the above difference equation

for the propagated error in the corrector alone is adequately representative, for
practical purposes, of the error propagation for the recommended mode, p-d-c-d-c.

If the difference equation (12) has constant coefficients, its solution

€, can be expressed in terms of the roots P; of the polynomial equation
2
P (1-M_)) - P(1+M,) - pMd) - M, = 0 (13)

by Gn = klpq + k2p; + kjp; (slightly modified in the case of a multiple
root), where the ki are constants. Equation (12) has constant coefficients
as required provided the di are constant as well as A, The di are constant
in the case of fixed mesh. In the variable mesh case, it is this investi-
gator's experience that the di vary very slowly when the integration is
stability limited. This is due to the fact that the ratio o of mesh in-
crements from step to step remains nearly constant, and the di are con-
stant when the mesh parameters &, B, and ¥ are constant. (When & is con-
stant, 8 and ¥ are the constants & + o? and o + e + a5, respectively.)
Thus it is reasonable to add the assumption of constant di’ for the pur-
Pposes of the stability analysis only, and in view of the above remarks it
becomes convenlent to treat numerical stability in terms of the two parameters
A and a.

11



When A = 0, the fundamental root of the characteristic equation (13) is
unity and the others are zero. When A # 0, one or both of the latter
roots may become larger in modulus than the fundamental root. This is
a condition of relative numerical instability [6], whereas absolute
numerical instability occurs whenever any root is greater than one in
modulus or when a root of unit modulus is a multiple root. Applying
these conditions as definitions, regions of both reletive and absolute
stability have been computed by tracking the roots of (13). These re-
gions are shown in Fig. 1 in terms of the parameters A and . Although
it is interesting to note the behavior for very large and small ¢, in
practice & actually remains fairly close to unity. Also shown in
Fig. 1 are the curves A d__1 = *1, which indicate the region for which
the corrector iterations converge, and within which the stability regions

have meaning.

4. NUMERICAL STABILITY FOR SYSTEMS OF DIFFERENTIAL EQUATIONS .
The variable mesh formulas are applicable for systems of differential
equations of the form

(1)
Q%;__ - Fi(x’y(l):y(a): *** y(N))’ i=1,2, e¢e¢, N . (lh)

In considering numerical stability for this case, equation (12) for the
propegated error is replaced by

(I—d_lhe)en+1 - (I+dth)cn - d;hGe, _, ~ d,hGE , = 0, (15)

where Eﬁ denotes the vector with components y(i)(xn) - yn(i). I is the
identity matrix and G is the Jacobian matrix with elements Gij = aFE/By(J)
which are assumed constant, as in the case of a single equation. A cursory
analysis of numerical stability is available through consideration of a
characteristic polynomial corresponding to a majorization of equation (15).
However, a more detailed approach involving the eigenvalues of the matrix G

has been pursued in the present study.

12
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Regions of Stability and Convergence of Corrector
Iterations of Variable Mesh Method
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Pre-multiplying equation (15) by a matrix T, representing a nonsingular

linear transformation such that TGT_1 = J is in canonical form, gives
(1-d_jhd)ny ., - (I b))y - d;hdp o - dhdy , = 0, (16)

where ﬁn = TED. The diagonal elements of J are the eigenvalues of G,

and if these are distinct, all the off diagonal elements of J are zero.

In this case the system of difference equations for the propagated errors
becomes uncoupled in passing from (15) to (16), and the relevant character-—
istic polynomial equation is again given by (13), with A taking on the
values hJii' If the eigenvalues of G are not distinct, the analysis is
more complicated, as indicated in [17, but the results are essentially

the same. 1In either case, however, Fig. 1 is inadequate because some

of the Jii may have nonzero imaginary parts.

It is easy to show that the zeros of any polynomial whose coefficients
are themselves polynomials in a complex variable A are the complex con-—
jugates of the zeros of the same polynomial with A replaced by its con-
jugate. Thus we need only track the roots of (13) for values of A with
positive imaginary parts, the regions of numerical stability in the lower

half of the A-plane then being given by symmetry.

The problem of determining regions of stability for fixed ¢ has thus
been reduced to computing the roots of (13) for incremental values of A
in the upper half A—plane and deciding at each point whether or not we
have stability according to some appropriate definition inveolving the

roots. We will limit ourselves to relative stability.

Choosing a definition of relative numerical stability presents an in-

teresting situation. (We ignored this situation in the case of a single

14



differential equation. It was present but rather inconsequential.) One
would like a definition which not only provides a unique decision regard-
ing stability at each point but also reflects one’s intuitive notions of
relative stability. For example, it is distressing to find it posaible
to pass repeatedly back and forth from stability to instability as DY
increases along some specified path. Two definitions were considered in
the present study--one an extension of the Ralston definition used above
for single differential equations, and the other a definition used by
Crane and Klopfenstein [7] and also by Krogh [8]. Both definitions lead
to meaningless relative stability boundaries for fairly large complex A
As a practical matter, however, it should be remembered that numerical
stability is irrelevant for sufficiently large A since either the trunca-
tion error becomes prohibitively large or convergence of the corrector

iterations is not obtained.

The generalization of Ralston's definition to apply to systems was con-
sidered by Lea [9]. Lea defined the principal root of the characteristic
polynomial equation as the continuous function of h satisfying the poly-
nomial equation and taking on the value unity at h = 0. All others were
called extraneous. Actually however, this "definition" fails to distin-
guish between the principal and extraneous roots because two of them may
satisfy the requirements of the principal root. The following example
illustrates this deficiency and further illustrates the inability to de-~

cide between stability and instability for a particular value of A,

For ¢ = 1 (fixed step size) the three roots of equation (13) are shown
in the p-plane (Fig. 2). The values corresponding to A = (-1,2) are in-
dicated by circles. Moving from the origin in the A-plane counterclock-
wise around the rectangle to (-1,2), the roots proceed in the p—plane
from the points (1,0), (0,0), and (0,0) to the circled points along the

15
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paths indicated by the arrows. The point A = (-1,2) appears stable
according to the Lea definition since the root which started at (1,0)

is the largest. However, as we continue around the rectangle in A-plane
we see upon returning to the origin that the root which started at (1,0)
is now at (0,0), while one of the roots which started at (0,0) is now at
(1,0). 1In other words, if we had proceeded clockwise in the A-plane, the
point X = (~1,2) would appear unstable.

This problem does not develop with small A; that is, when we consider a
somewhat smaller rectangle the roots return to their starting points.

On the other hand, the problem does preclude a complete partitioning of
the A-plane into meaningful regions of stability and instability by this

procedure.

The alternate definition does uniquely partition the A-plane into regions
of stability and instability, but these regions are not acceptable for
large A . The problem here, although not recognized in either [77] or
[8], is the one mentioned earlier of alternating between stability and
instability as A increases. According to this definition, a method is
relatively stable if the modulus of each of the roots, other than the

one nearest exp(A), is less than or equal to exp[Re(k)], with equality

permitted for simple roots only.

To illustrate the problem with this definition we note first that for

o =1, the roots of equation (13) go from the "source points," (1,0),
(0,0) and (0,0), to the "sink points," approximately (-2.37,0.0),
(0.13,-0.17), and (0.13,+0.17), not necessarily respectively, as A goes
from the origin to infinity along any path in the A~plane. Consider now,
for example, A moving along the real axis to (0.5,0.0) and then vertically

to infinity. For the vertical portionm, exp(l) traverses again and again

17



the circle in the p-plane with radius exp(0.5) and center (0,0). Event-
ually, when the three roots are sufficiently close to their sink points,
they are each nearest exp(k) for a portion of each cycle of exp(A). Thus
by definition the method is relatively stable for the portion of each
cycle when the root near (-2.37,0.0) is the closest to exp(\) and unstable
otherwise. In this manner, on the vertical line Re(\A) = 0.5, we have
stability up to Im(A) = 3.0, then instability to about 8.3, stability
again to about 9.9, etc.

Since the second definition has the practical advantage that its applica-
tion is independent of path in the A~plane, and since the problem just
noted apparently occurs only for excessively large A, there is no practical
difficulty in its usage: one simply ignores stable regions lying "outside"

unstable regions.

Consequently the results shown in Fig. 3 were obtained by applying the
second definition. The two definitions give very similar results for

small A and reasonable values of q, say 1/4 <a < 4.

Also shown in Fig. 3 are the curves IAd_1| = 1. In a manner analogous
to the case of a single differential equation, it can be shown that for
the dominating eigenvalue of the Jacobian matrix of the system, the con-

dition |Ad_1| < 1 is necessary for convergence of the corrector iterations.

5. CRITERIA FOR SELECTING MESH INCREMENTS. An algorithm for the
solution of differential equations by variable mesh procedures would be
incomplete without reasonably sound, general purpose criteria for deciding
what step size to use at each step of the integration. The main informa-
tion required for specifying effective criteria was developed in the pre-—

vious sections. In essence, the mesh selection procedure discussed below

18
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represents an attempt to choose each step size Just small enough 80 that
the following three criteria are satisfied in the numerical solution of
single differential equations:

a) The relative truncation error must remain within a prescribed

tolerance 0.

b) The condition for convergence of the corrector iterations must

be satisfied.

¢) The method must possess relative numerical stability.

Let p and c denote the predicted and final corrected approximations

n+l n+l
for y(xn+l). Let H = T be the step size to be used in com-—
puting the solution at X 107 and let a, be the new value of ¢ as determined
by the truncation error criterion in a mamnner described below. (Thus

from the truncation error criterion we will get H = h/at.)

Using the truncation error terms for the predictor and corrector formulas
5 yZ and obtain, through

5!

obtained in Section 2, we can eliminate the factor

fifth order im h, the equation
(x ) — ¢ = cn+1_pn+1 C
AL | n+l P C n’
n n

where Pn and Cn are given by equations (9) and (10), respectively.
We want to find o, such that the relative error in L P is 0, that is,

IY(xn+2) - cn+2l = ﬁly(xn+2)|.
In practice we actually set

/ ®n+1 Pn+1 Eg HS -
Pn-cn h5

5|cn+ll’

20



giving

1/5
Cn(cn+1_pn+1 (17)
@y = |8 (P € ) G ?0
n+l''n n
If ¢

el = O, absolute rather than relative truncation error must be
considered, the allowable tolerance depending on the range of the machine.

Criteria b and ¢ above are combined to produce a single value o, for the
mesh parameter o« at the new step. To this end, we solve H = h/'ac gimul-
taneously with expressions approximating the boundary of the intersection
of the regions of relative stability and iteration convergence shown in
Fig. 1. For this purpose the following expreasions have been found to fit

the boundary data accurately:

5/2

fy <0: 0« o, < .25: ny = —3.210

2 < . = - 0
.25 ac < 1.0: ny 17 1. %c
= o, = -

1.0 ac <®: Hf 1.08/05c 2,

fy > 0: a, < .25: not permitted (see Fig. 1)

25 Sa, $1.0: BE =% [2 + (1 _ac)7/4]

2
o = —

1.0<ac<°.Hf 2+3c.

An approximation for f can be obtained from computations from the com-

pleted step:

f(xn+1 ’pn+1) - f(xn+1 ’cn+1)

~ -—
y pn+1 cn+1
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For the case fy >0, .25 5;ac £1.0, an iterative scheme is used to solve

for a :
c

(i+1) _ nt, .
Yo 8 +4(1 —aéi))7/l*

It has been determined (by actual calculations) that with a( ) _ = hf /)
21) is always correct to within two units in the second dec1mal place
Thus a, is computed according to the following simultaneous solutions of

each of the above equations with the equation H = h/ozc:

-®<hf =<-.92: a =(1.08 -hf_)/2
g =92 o= ( Ry

.92 < hfy < - .025: o = (.17 +4.03 - 4.36hfy)/2.18

: - 2/7
025 < hf < 0: o = (—hfy/3.2)

< < . -
0 hfy .875: ozc .25

A
.875 < hfy < 8/3: o, = 3hfy/[8 + 4(1 - hfy/3)7/]

8/3 = hf < 2w, = (hfy - 2/3)/2.

The new step size H can then be taken as h/Q, where Q= max(at,ac) .
Although this policy has proven satisfactory in practice, it is possible
that it could produce a new step size which is substantially different
from the preceding ome (but not likely because of the contracting charac-
ter of the fifth root), and this in turn could result in a subsequent
loss of accuracy. Therefore the writer recommends the addition of a
precautionary restriction, such as 2/3 < a < 3/2, using a smeller or
larger Interval depending on the requirements of the particular problem
being solved.
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Experience indicates that when even only a moderate degree of accuracy
is required, the numerical solution of most problems is limited by the
truncation rather than the stability (or convergence of the iterations)
criterion. Of course it may be that the truncation criterion is limit-
ing the step size by detecting numerical instability of the predictor;
we know for example that the numerical integration of stiff equations
is limited by stability. At any rate, when we begin to examine mesh
criteria for large systems of differential equations, it is especially
fortultous that satisfying the truncation error criterion usually pre-
cludes instability, because in this case the truncation criterion is the
only one which can be feasibly incorporated into the algorithm. For
large systems the amount of computing time required to evaluate either
the Jacoblan matrix G or its eigenvalues at each step would usually
be prohibitive. Of course for certain small systems it may not be pro-
hibitive, and then the results shown in Fig. 3 can be incorporated in a
manner analogous to that given above for obtaining ac in the case of a
single differential equation. This procedure has proved successful for
selected systems although it did not alter the mesh increments substan-
tially from those selected by the truncation criterion alone when
reasonably small values of B were used in the latter criteriom.

The mesh selection procedure recommnended for most large systems thus con-
sists of using only the truncation error criterion. Values of az are
camputed from equation (17) for each component of the system, and then

a is set equal to the fifth root of the largest of these.

6. NUMERICAL TESTING AND COMPARISON WITH OTHER METHODS. The vari-
able mesh multistep method has been tested by applying it to several
single differential equations and to several systems of differential
equations. This testing has given a fairly thorough demonstration of
the effectiveness and reliability of the algorithm. One system of
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substantial importance for which the variable mesh approach proved
especially effective was the problem of heat transfer to a supercritical
fluid with variable physical properties and fully developed turbulent
flow in a smooth tube [1]. Another system, discussed in [10], was a
stochastic model of enzymatically controlled cooperative unwinding and
template replication of biological macromolecules. Due to the compli-
cated mathematical formulation of these problems, they wuill not be given
in detail here. However, several simpler test problems are listed in
Table 1.

Most of these test problems were selected because of their inherent poten-
tial, both in the behavior of the solutions and in the behavior of the
partial derivatives of the right hand sides with respect to the dependent
variables, for producing numerical difficulties. Some are particularly
suited to a variable mesh treatment while others, Nos. 5, 6, 10, and 11,
can be solved efficiently with constant mesh increments. In the latter
cases it is Iimportant to note that the accuracy obtained by the variable
mesh method was about the same as that obtained using constant increments
with the same number of steps. This indicates that the variable mesh pro-
cedures do not have a degrading effect when they are used unnecessarily.

Each equation was solved on the IBM System 360 using single precision
starting values and double precision floeting point operations to advance
the solution. Values of &, the target relative truncation error,
ranging fram 1070 to 1071
obtained was roughly proportionate to the values of ® specified. It
was noted that the step lengths were limited almost entirely by the trun-
catlion error for the smaller values of & with the sta.b:ility/ convergence
criterion becoming of increasing importance with increasing 5.

were used for each equation. The accuracy
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PROBLEMS USED TO TEST VARIABLE MESH METHOD

TABLE 1

14

Differential Integration Initial Exact
Problem Equation(s) Interval Value Solution
1 y = ~40xy -1 £x 51 |exp(-10) exp(10-20x")
) y’ (2xy)_1 1 = S 1020 0 Vin(x)
3 vy =y/x - (1/x)cos(1/x)|-1 S x s -.01]sin(1) x sin(1/x)
A y = —exp(x) ¥ 0sSx <5 exp(-1) expl-exp(x)]
5 y = -y 0 =x <10 1 exp(x)
6 y =y 0<x <10 1 exp(x)
7 y: - —y/z 0<x =5 exp(—l) exp[—exp(x)]
Z =z 1 exp(-x)
8 y: = y(y/z+1) 0£x <5 —exp(-1) —explx-exp(x)]
z =y exp(-1) expl-exp(x
9 y, = y*/2-40z 1 <xS1 |40 exp(-10) | —40x exp(10-20x°)
z =Y exp(-10) exp(10-2
10 y: = -2(y+z) 0 =<x £100 0 -2 exp(—=x) sin(x)
z =y 1 exp(-x)[sin(x) + cos(x)]
11 y, = —exp(-x)-100z 0Sx 51.5 2 expé-x)+ exp(-100x)
z' = -100 z 1 exp(-100x)
12 y = -2/x -1 $x < -,01cos(1)-sin(1) | sin(1/x)~(1/x)cos(1/x)
z =y sin(1) x sin(1/x




Same of these problems, 1, 9, and 12, were used in comparing the new
algorithm with other fourth order numerical methods which also permit
some variability in the mesh increments. The other methods used were
the standard fourth order Runge-Kutte method, the Nordsieck method, and
the basic Adams-Bashforth/Adems-Moulton method, allowing doubling and
halving of the increments with the latter. As indicated below, the new
method proved superior to the other methods for these problems.

Since the Runge-Kutta method requires four derivative evaluations per
step while the others were used with only two evaluations per step, half
as many steps were used with the Runge-Kutta method as with the other
three. For this method the step sizes were obtained by linear interpola-
tion of an input table, re-applying the method with different tabtles
until no improvement could be obtained.

The Nordsieck method permits increasing (or decreasing) the step size by
a factor € (or 1/9) » The test problems used in the present study were
solved with © = 2, the value emphasized in [3] where the symbol "B" is
used for this factor, and also with smaller values to permit more gradual
varying of the increments. In addition, Nordsieck's interval control
mechanism requires a parameter "e" used in a manner to imply a target
error 8., For each value of 8, the problems used here were solved
with several values of e, seeking one which produced the number of steps
commensurate with the number used by the other methods. However for

@ = 2, the Nordsieck method used too many steps even when e was reduced
to unity. (In fact, considerable difficulty was encountered in trying to
locate values of 6 which were usable in this sense. Successful choices
are indicated in Table 2.) It 1s also noted here that it was not neces-
sary to use Nordsieck's starting procedure for the test problems since
all the required initial information was available.
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For Problem 1, the absolute value of the relative error in the solution
obtained by each of the four methods is shown in Fig. 4. For this problem,
the entries in Table 2 are the areas under the curves of Fig. 4. For the
other two problems, the entries :Ln Table 2 reflect alternative measures

of relative error which are more appropriate for the numericel solutions
obtained for those two systems of equations. As can be seen from the
table, the new variable mesh method gdve the best performance; and the
basic Adams method, augmented with interpolation procedures to permit
doubling and helving, also did considerably better than the other two

methods .
TABLE 2
COMPARISON OF RELATIVE ERROR
Problem | Variable Mesh Adams Runge-Kutta Nordsieck
1 1.5x10% |2.3x107% 2.8x107|3.0x 107 (8 =1.01)
9 1.8 x 10 |6.0x1070| 5.2 x102[1.7 x 1072 (8 = 1.01)
12 2.0 x 1072 5.5 x 10°2{ 1.0 x 107 6.5 x 1071 (6 =1.5)
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T. EXTENSION OF THE METHOD FOR STIFF EQUATIONS. In the computational
work carried out with regard to the basic variable mesh method, it was
observed that the mesh increments are usually limited by the truncation
error criterion. But numerical stability may be the limiting mechanism in
the case of large Lipschitz constants. This may arise, for example, in
studies of mechanical, electrical, chemlcal, or biological processes where
a system of differential equations 1s used to represent the simultaneous
relaxation of the various camponents at greatly different rates.

Several investigators have consldered the problem of stability limited inte-
gration. Crane and Klopfenstin [7] and Krogh [8] have attacked the problem
through optimum choice of the coefficients in the "predictor” of standard
predictor-corrector type methods. They claim slight improvement for sta-
bility limited problems, but this is at the expense of substantial degrada-
tion for other problems. Transformation methods have also been proposed,
but these are time consuming and difficult to apply in general. A more
promising approach appears to be that followed by Treanor (11] vhere the
method is designed from the outset with this type of problem in mind. In
the following paragraphs an algorithm is presented which is similar to that
of Treanor but has the advantage of relying on the variable mesh, multistep
framework rather than the Runge~-Kutta framework used by Treanor.

The central idea 1is to extend the method by including explicit dependence on
the dependent variable as well as on the independent variable in the local
approximating function for the derivative. In particular, let us assume
that f can be approximated in a neighborhood of (xn, yn) as linear in

y and cubic in x:

£x, y) i = - B(y -3 ) + A+ Blx - x) + S (x - 1) B (x - ), (8)

vhere the coefficients P, A, B, C, D are to be determined.
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The equation dy/dx = k ~can be integrated in closed form from x = to

xn+l’ using the integrating factor er and integration by parts, to

give & formula for computing Ynel® The result is

yh+l

=y, +Aq+ (b - @ (B/P - c/P% + D/Pj)
+ n%(c - D/P)/2P + > D/6P ,

where q = (1 - e-Ph)/P.

It is the presence of the coefficient P that provides the great advantage
with regard to numerical stability. If the usual type of analysis of

numerical stability is applied to this method, numerical stability is in-

dicated for arbitrarily large |3f/3y

If P is put equal to zero in (18), then the above formula for Ypel is

replaced by

N

Yo, = ¥, + Ab + Bn®/2! & ch7/3¢ + Dn'/ht

which can be shown to be identical with the basic variable mesh method,
provided the coefficients are determined appropristely, as follows: The
five coefficients in (l) are determined by equating kn to five previously
computed values of f. Coefficients for a predictor formula are found by
metching at the points (x_,, cn_i), 1=0,1,2 3 andat (x, pn),
where P, denotes the predicted value of y(xn) and h denotes the
corrected value. For a corrector, the point (xn+l’ Pn+l) is used instead

).

of (xn-j’ Che3
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If the function f i1s actually at most a linear functiomn of y plus a
cubic function of x, +the formulas give the exact value of y(xn+l) « How-

ever no expression for the truncation error is available in general.

A computer program was written to test this method with selected differential
equations. The results of this testing are typifled by the following example:
The system of equations y' = - 2xy/z, z' = - 2xz, with initial conditions
y(0) = e-l, z(0) = 1, was solved by both the basic method and the extended
method in the interval O < x < 2.2. This system is not stiff near x = O,
but becomes stiff for larger x. The exact solution is y = expl- exp(xz) 1,

z = exp(~ x°). Using the truncation criterion described earlier (with

8 = 0001) for mesh selection, accurate solutions were obtained by both
methods for the dominant component 2z while the solutions for y remained
stable and reasonable (< .0T% error for z and < 10% error for y). The
basic method required 394 steps compared to 270 for the extended method.

As expected, all the advantage provided by the extended method came in the

latter stages of the integratiom.

8. APPLICATION TO PARTIAL DIFFERENTIAL EQUATIONS. Some consideration
has been given to applying the variable mesh multistep spproach to partial
differential equations. To 1llustrate one straight-forward way of accom-

plishing this, consider a method which, when applied to the simple equation

u, = A Yo reduces to the formula

2
+d.°Du

2
+ A atla_; D a, 3

Ynel, 3 © Yo, Ynel, 3

. (19)
4
+d, D Uyt d, D un—z,JJ’
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where the second difference operator D° is defined by

2 2
D,y = (i, g1 g,y ¥ Uy g )/

With the d, defined by (8), (19) can be regarded as an interpretation of

(7)« Equation (13) determines the numerical stability, and as can be seen
from Figure 1, formula (7) is absolutely stable for

-35)150, (20)

for the case a =1, PB=2, Y=3.

Now let €, 3= u(tn, xJ) - Uy g It follows that

2 2 z
uxx(tn’ xJ) - D un,J - ('n)J"'l i} z‘nyj ¥ cn)vj'l)/Ax + o(ax).

Since (19) is fourth order accurate in time and second in space, we obtain

2
A ot Z
‘41 = Sn * o? G®ai, 341 ™ 2%k, * Cnek, 3-1) "
k=-1 .
Putting ‘n, j4m = pn e:L o Ax, we have
4 ox 2
Do LA g(ei P - z dkpz-k )
Ax

k=<1
Now if we let

)\=AA;(eiAx-2+e-iAx)
ha At 2 Ax
=-—Tsin Z
Ax

we deduce from (20) that formula (19) is stable for
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OsA—A;'sE.,
Ax

for the case a-l, B-Z, Y= 3.

The above result indicates that this multistep approach has better stability
than the well known forward difference method (which requires A At/sz <1/2),
allowing a 50% increase in the step size At for given Ax. Furthermore,
the forward difference method is only first order accurate in time and second

in space.

In practice, numerical stability is usually of more concermn than local
accuracy vhen solving equations of the type considered. Since methods are
presently avallable which permit arbitrary mesh ratios, it is felt that a
more promising alternative to the above is to consider combining the varia-
ble mesh approach with such unconditionally stable methods. Methods which
appear to be particularly good candidates for this purpose are the three-
time-level methods (see e.g. [12]) which also permit accurate handling of non-
linearities in the differential equations. A program along these lines is

planned .
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